Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608141

ABSTRACT

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Subject(s)
Nitrous Oxide , Nitrous Oxide/metabolism , Bacteria/metabolism , Oxidoreductases/metabolism , Denitrification
2.
Int Microbiol ; 24(4): 631-648, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33907940

ABSTRACT

Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 µm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.


Subject(s)
Geobacter , Biofilms , Electron Transport , Fimbriae, Bacterial/genetics , Genetic Testing , Geobacter/genetics , Oxidation-Reduction
3.
PLoS One ; 16(2): e0247534, 2021.
Article in English | MEDLINE | ID: mdl-33621265

ABSTRACT

The demand for food will outpace productivity of conventional agriculture due to projected growth of the human population, concomitant with shrinkage of arable land, increasing scarcity of freshwater, and a rapidly changing climate. While aquaponics has potential to sustainably supplement food production with minimal environmental impact, there is a need to better characterize the complex interplay between the various components (fish, plant, microbiome) of these systems to optimize scale up and productivity. Here, we investigated how the commonly-implemented practice of continued microbial community transfer from pre-existing systems might promote or impede productivity of aquaponics. Specifically, we monitored plant growth phenotypes, water chemistry, and microbiome composition of rhizospheres, biofilters, and fish feces over 61-days of lettuce (Lactuca sativa var. crispa) growth in nitrogen-limited aquaponic systems inoculated with bacteria that were either commercially sourced or originating from a pre-existing aquaponic system. Lettuce above- and below-ground growth were significantly reduced across replicates treated with a pre-existing aquaponic system inoculum when compared to replicates treated with a commercial inoculum. Reduced productivity was associated with enrichment in specific bacterial genera in plant roots, including Pseudomonas, following inoculum transfer from pre-existing systems. Increased productivity was associated with enrichment of nitrogen-fixing Rahnella in roots of plants treated with the commercial inoculum. Thus, we show that inoculation from a pre-existing system, rather than from a commercial inoculum, is associated with lower yields. Further work will be necessary to test the putative mechanisms involved.


Subject(s)
Hydroponics/methods , Lactuca/growth & development , Microbiota , Nitrogen/analysis , Lactuca/microbiology , Plant Development/physiology
4.
mSystems ; 6(1)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563788

ABSTRACT

Competition between nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) for resources in anoxic environments is generally thought to be governed largely by thermodynamics. It is now recognized that intermediates of nitrogen and sulfur cycling (e.g., hydrogen sulfide, nitrite, etc.) can also directly impact NRB and SRB activities in freshwater, wastewater, and sediment and therefore may play important roles in competitive interactions. Here, through comparative transcriptomic and metabolomic analyses, we have uncovered mechanisms of hydrogen sulfide- and cysteine-mediated inhibition of nitrate respiratory growth for the NRB Intrasporangium calvum C5. Specifically, the systems analysis predicted that cysteine and hydrogen sulfide inhibit growth of I. calvum C5 by disrupting distinct steps across multiple pathways, including branched-chain amino acid (BCAA) biosynthesis, utilization of specific carbon sources, and cofactor metabolism. We have validated these predictions by demonstrating that complementation with BCAAs and specific carbon sources relieves the growth inhibitory effects of cysteine and hydrogen sulfide. We discuss how these mechanistic insights give new context to the interplay and stratification of NRB and SRB in diverse environments.IMPORTANCE Nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) colonize diverse anoxic environments, including soil subsurface, groundwater, and wastewater. NRB and SRB compete for resources, and their interplay has major implications on the global cycling of nitrogen and sulfur species, with undesirable outcomes in some contexts. For instance, the removal of reactive nitrogen species by NRB is desirable for wastewater treatment, but in agricultural soils, NRB can drive the conversion of nitrates from fertilizers into nitrous oxide, a potent greenhouse gas. Similarly, the hydrogen sulfide produced by SRB can help sequester and immobilize toxic heavy metals but is undesirable in oil wells where competition between SRB and NRB has been exploited to suppress hydrogen sulfide production. By characterizing how reduced sulfur compounds inhibit growth and activity of NRB, we have gained systems-level and mechanistic insight into the interplay of these two important groups of organisms and drivers of their stratification in diverse environments.

5.
Environ Microbiol ; 20(12): 4197-4209, 2018 12.
Article in English | MEDLINE | ID: mdl-30106224

ABSTRACT

Through complex interspecies interactions, microbial processes drive nutrient cycling and biogeochemistry. However, we still struggle to predict specifically which organisms, communities and biotic and abiotic processes are determining ecosystem function and how environmental changes will alter their roles and stability. While the tools to create such a predictive microbial ecology capability exist, cross-disciplinary integration of high-resolution field measurements, detailed laboratory studies and computation is essential. In this perspective, we emphasize the importance of pursuing a multiscale, systems approach to iteratively link ecological processes measured in the field to testable hypotheses that drive high-throughput laboratory experimentation. Mechanistic understanding of microbial processes gained in controlled lab systems will lead to the development of theory that can be tested back in the field. Using N2 O production as an example, we review the current status of field and laboratory research and layout a plausible path to the kind of integration that is needed to enable prediction of how N-cycling microbial communities will respond to environmental changes. We advocate for the development of realistic and predictive gene regulatory network models for environmental responses that extend from single-cell resolution to ecosystems, which is essential to understand how microbial communities involved in N2 O production and consumption will respond to future environmental conditions.


Subject(s)
Ecosystem , Environmental Microbiology , Systems Biology , Environmental Monitoring/methods , Nitrogen Cycle , Nitrous Oxide/metabolism
6.
Geobiology ; 16(5): 522-539, 2018 09.
Article in English | MEDLINE | ID: mdl-29905980

ABSTRACT

We established Fe(III)-reducing co-cultures of two species of metal-reducing bacteria, the Gram-positive Desulfotomaculum reducens MI-1 and the Gram-negative Geobacter sulfurreducens PCA. Co-cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co-culture. Co-cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co-cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co-cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co-culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c-type cytochromes and type IV pili proteins, were significantly increased in abundance in co-cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co-cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co-culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co-cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.


Subject(s)
Ferric Compounds/metabolism , Proteomics/methods , Desulfotomaculum/metabolism , Geobacter/metabolism , Oxidation-Reduction , Proteome/metabolism
7.
Front Microbiol ; 7: 191, 2016.
Article in English | MEDLINE | ID: mdl-26925055

ABSTRACT

The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.

8.
Biochem Biophys Res Commun ; 467(3): 503-8, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26454174

ABSTRACT

Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron-reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.


Subject(s)
Desulfotomaculum/enzymology , FMN Reductase/metabolism , FMN Reductase/genetics
9.
PLoS One ; 10(9): e0137466, 2015.
Article in English | MEDLINE | ID: mdl-26348330

ABSTRACT

Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.


Subject(s)
Cloning, Molecular/methods , DNA/genetics , Homologous Recombination/genetics , Recombinases/genetics , Escherichia coli/genetics , Genes, Synthetic , Inverted Repeat Sequences/genetics , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...